Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux.
نویسندگان
چکیده
Mixotrophic plankton, which combine the uptake of inorganic resources and the ingestion of living prey, are ubiquitous in marine ecosystems, but their integrated biogeochemical impacts remain unclear. We address this issue by removing the strict distinction between phytoplankton and zooplankton from a global model of the marine plankton food web. This simplification allows the emergence of a realistic trophic network with increased fidelity to empirical estimates of plankton community structure and elemental stoichiometry, relative to a system in which autotrophy and heterotrophy are mutually exclusive. Mixotrophy enhances the transfer of biomass to larger sizes classes further up the food chain, leading to an approximately threefold increase in global mean organism size and an ∼35% increase in sinking carbon flux.
منابع مشابه
Mixotrophy in the Marine Plankton.
Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the pla...
متن کاملVariation in the transfer of energy in marine plankton along a productivity gradient in the Atlantic Ocean
Plankton play a key role in oceanic carbon flux as the primary biological mechanism for the sequestration of carbon out of the atmosphere into surface waters. The transfer of energy between phytoplankton and zooplankton can be inferred from regular patterns in population size structure, where plots of abundance within size classes typically show a power-law dependence on size. Here we analyze s...
متن کاملCulture optimization for the emergent zooplanktonic model organism Oikopleura dioica
The pan-global marine appendicularian, Oikopleura dioica, shows considerable promise as a candidate model organism for cross-disciplinary research ranging from chordate genetics and evolution to molecular ecology research. This urochordate, has a simplified anatomical organization, remains transparent throughout an exceptionally short life cycle of less than 1 week and exhibits high fecundity. ...
متن کاملGlobal patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency.
Predator-prey body size relationships influence food chain length, trophic structure, transfer efficiency, interaction strength, and the bioaccumulation of contaminants. Improved quantification of these relationships and their response to the environment is needed to parameterize food web models and describe food web structure and function. A compiled data set comprising 29582 records of indivi...
متن کاملBioaccumulation of polonium-210 in marine copepods
210Po, a naturally occurring radioisotope that is ubiquitous in seawater, is especially enriched in proteinaceous tissues of marine organisms and may therefore be useful as a tracer of organic carbon flux in marine systems. Due in part to its biomagnification in marine food chains, 210Po provides the largest radiation dose to any organism under natural conditions. To better understand the exten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 11 شماره
صفحات -
تاریخ انتشار 2016